Novel Methodology for Inflection Circle based synthesis of Straight Line Crank Rocker Mechanism

Author:

Shiwalkar Prashant1,Moghe S. D.2,Modak J. P.3

Affiliation:

1. Shri Ramdeobaba College of Engineering and Management Ramdeo Tekadi, Katol Road Nagpur, Maharashtra 440 013 India

2. Katol Road Nagpur, Maharashtra 440 013 India

3. At :Khandala, Post : Valni, Kalmeshwar Road, Borgoan Phata, near Hanuman Temple, Nagpur,, Maharashtra 441501 India

Abstract

Abstract Emerging fields like Compact Compliant Mechanisms have created newer/novel situations for application of straight line mechanisms. Many of these situations in Automation and Robotics are multidisciplinary in nature. Application Engineers from these domains are many times uninitiated in involved procedures of synthesis of mechanisms and related concepts of Path Curvature Theory. This paper proposes a predominantly graphical approach using properties of Inflection Circle to synthesize a crank rocker mechanism for tracing a coupler curve which includes the targeted straight line path. The generated approximate straight line path has acceptable deviation in length, orientation and extent of approximate nature well within the permissible ranges. Generation of multiple choices for the link geometry is unique to this method. To ease the selection, a trained Artificial Neural Network (ANN) is developed to indicate relative length of various options generated. Using studied unique properties of Inflection Circles a methodology for anticipating the orientation of the straight path vis-à-vis the targeted path is also included. Two straight line paths are targeted for two different crank rockers. Compared to the existing practice of selecting the mechanism with some compromise due to inherent granularity of the data in Atlases, proposed methodology helps in indicating the possibility of completing the dimensional synthesis. The case in which the solution is possible, the developed solution is well within the design specifications and is without a compromise.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3