Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures

Author:

Kosmatopoulos E. B.1,Smyth A. W.2,Masri S. F.3,Chassiakos A. G.4

Affiliation:

1. School of Engineering, University of Southern California, Los Angeles, CA 90089-2563

2. School of Engineering and Applied Science, Columbia University, New York, NY 10027-6699

3. School of Engineering, University of Southern California, Los Angeles, CA 90089-2531

4. School of Engineering, California State University, Long Beach, CA 90840-5602

Abstract

The availability of methods for on-line estimation and identification of structures is crucial for the monitoring and active control of time-varying nonlinear structural systems. Adaptive estimation approaches that have recently appeared in the literature for on-line estimation and identification of hysteretic systems under arbitrary dynamic environments are in general model based. In these approaches, it is assumed that the unknown restoring forces are modeled by nonlinear differential equations (which can represent general nonlinear characteristics, including hysteretic phenomena). The adaptive methods estimate the parameters of the nonlinear differential equations on line. Adaptation of the parameters is done by comparing the prediction of the assumed model to the response measurement, and using the prediction error to change the system parameters. In this paper, a new methodology is presented which is not model based. The new approach solves the problem of estimating/identifying the restoring forces without assuming any model of the restoring forces dynamics, and without postulating any structure on the form of the underlying nonlinear dynamics. The new approach uses the Volterra/Wiener neural networks (VWNN) which are capable of learning input/output nonlinear dynamics, in combination with adaptive filtering and estimation techniques. Simulations and experimental results from a steel structure and from a reinforced-concrete structure illustrate the power and efficiency of the proposed method.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3