Affiliation:
1. Laboratory for Energy Conversion, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
Abstract
The accurate modeling of the wind resource over complex terrain is required to optimize the micrositing of wind turbines. In this paper, an immersed boundary method that is used in connection with the Reynolds-averaged Navier–Stokes equations with k-ω turbulence model in order to efficiently simulate the wind flow over complex terrain is presented. With the immersed boundary method, only one Cartesian grid is required to simulate the wind flow for all wind directions, with only the rotation of the digital elevation map. Thus, the lengthy procedure of generating multiple grids for conventional rectangular domain is avoided. Wall functions are employed with the immersed boundary method in order to relax the stringent near-wall grid resolution requirements as well as to allow the effects of surface roughness to be accounted for. The immersed boundary method is applied to the complex terrain test case of Bolund Hill. The simulation results of wind speed and turbulent kinetic energy show good agreement with experiments for heights greater than 5 m above ground level.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献