Multilevel Strain Controlled Fatigue on a Type 304 Stainless Steel

Author:

Bernard-Connolly M.1,Bui-Quoc T.1,Biron A.1

Affiliation:

1. Section of Applied Mechanics, Department of Mechanical Engineering, Ecole Polytechnique, Montre´al, Canada

Abstract

A series of cumulative damage strain-controlled fatigue tests at 20°C has been carried out on a Type 304 stainless steel with two, three, and five strain levels, both in an increasing and decreasing order. Experimental results show that if the strains are applied in an increasing order, the summation of cycle ratios is greater than unity, whatever the number of applied levels. For a decreasing order, this summation is less than one. However, for the same difference between high and low levels, this summation is closer to unity when the number of applied levels increases. The cumulative damage effect is evaluated using an approach which takes into account the sequence effect of loading. The procedure is based on the modification of the damage evolution with respect to that corresponding to constant amplitude loading. This is explained by an interaction effect due to a previous loading. With the interaction effect parameter suggested, the procedure is generalized to any discrete strain pattern. An application of the method is carried out to estimate the sums of life fractions required for failure for the material investigated. The correlation between predictions and experimental results is then discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3