Stability of Plane Parallel Flow Revisited for Particle–Fluid Suspensions

Author:

Ru C. Q.1

Affiliation:

1. University of Alberta Department of Mechanical Engineering, , Edmonton, AB T6G 2G8 , Canada

Abstract

Abstract An alternative model is proposed for hydrodynamic stability of plane parallel flow of an incompressible Newtonian fluid with suspended solid particles. For heavy particle-laden dusty gases with negligible particle volume fraction, the effective complex-form mean velocity in the modified Orr–Sommerfeld equation derived by the present model is showed to be essentially identical to the well-known Saffman's classical results. In the limit cases of small or large Stokes number of particles, simple formulas are derived for the effective Reynolds number ratio of the particle-laden suspension to the clear fluid without particles under otherwise identical conditions. The derived formula for particles of finite particle-to-fluid density ratio and small Stokes number is verified by comparing predicted results with known data, although a comparison of the derived formula with known results for particles of finite density ratio and large Stokes number cannot be made here due to the lack of available data. It is hoped that the present work could offer a conceptually novel and relatively simplified model for hydrodynamics of solid particle–fluid suspensions.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3