Simulation of Movement in Three-Dimensional Musculoskeletal Human Lumbar Spine Using Directional Encoding-Based Neurocontrollers

Author:

Nasseroleslami Bahman1,Vossoughi Gholamreza2,Boroushaki Mehrdad3,Parnianpour Mohamad4

Affiliation:

1. Department of Biology,Northeastern University,134 Mugar Life Sciences,360 Huntington Avenue,Boston, MA 02115e-mail: nasseroleslami@gmail.com

2. Center of Excellence in Design,Robotics, and Automation,School of Mechanical Engineering,Sharif University of Technology,Azadi Avenue,P.O. Box 145888-9496,Tehran, Irane-mail: vossough@sharif.edu

3. Department of Energy Engineering,Sharif University of Technology,Azadi Avenue,P.O. Box 11155-8639,Tehran, Irane-mail: boroushaki@sharif.edu

4. Biomechanics Laboratory,School of Mechanical Engineering,Sharif University of Technology,Azadi Avenue,P.O. Box 11365-9567,Tehran, Irane-mail: parnianpour@sharif.edu

Abstract

Abstract Despite development of accurate musculoskeletal models for human lumbar spine, the methods for prediction of muscle activity patterns in movements lack proper association with corresponding sensorimotor integrations. This paper uses the directional information of the Jacobian of the musculoskeletal system to orchestrate adaptive critic-based fuzzy neural controller modules for controlling a complex nonlinear redundant musculoskeletal system. The proposed controller is used to control a 3D 3-degree of freedom (DOF) musculoskeletal model of trunk, actuated by 18 muscles. The controller is capable of learning to control from sensory information, without relying on pre-assumed model parameters. Simulation results show satisfactory tracking of movements and the simulated muscle activation patterns conform to previous EMG experiments and optimization studies. The proposed controller can be used as a computationally inexpensive muscle activity generator to distinguish between neural and mechanical contributions to movement and for study of sensory versus motor origins of motor function and dysfunction in human spine.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3