Evaluation of the Effectiveness of Transurethral Radio Frequency Hyperthermia in the Canine Prostate: Temperature Distribution Analysis

Author:

Zhu Liang1,Xu Lisa X.2

Affiliation:

1. Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250

2. Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

The heating pattern of a transurethral radio frequency (RF) applicator and its induced steady-state temperature field in the prostate during transurethral hyperthermia treatment were investigated in this study. The specific absorption rate (SAR) of the electromagnetic energy was first quantified in a tissue-equivalent gel phantom. It was used in conjunction with the Pennes bioheat transfer equation to model the steady-state temperature field in prostate during the treatment. Theoretical predictions were compared to in vivo temperature measurements in the canine prostate and good agreement was found to validate the model. The prostatic tissue temperature rise and its relation to the effect of blood perfusion were analyzed. Blood perfusion is found to be an important factor for removal of heat especially at the higher RF heating level. To achieve a temperature above 44°C within 10 percent of the prostatic tissue volume, the minimum RF power required ranges from 5.5 W to 36.4 W depending on the local blood perfusion rate (ω = 0.2−1.5 ml/gm/min). The corresponding histological results from the treatment suggest that to obtain better treatment results, either higher RF power level or longer treatment time (>180 minutes) is necessary. This is consistent with the predictions from the theoretical model developed in this study.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3