Generating Well Defined Residual Stresses in Laboratory Specimens

Author:

Mahmoudi Amir-Hossein1,Aird Christpher1,Truman Christopher E.1,Mirzaee-Sisan Ali1,Smith David J.1

Affiliation:

1. University of Bristol, Bristol, UK

Abstract

Residual stresses play an important role in increasing and decreasing the possibility of failure. The magnitude and direction of the residual stresses is an important factor in the integrity of engineering structures, including those containing defects. Ideally, we would like to gain insight into the integrity of a structure through testing laboratory samples. The purpose of this paper is to review methods of introducing residual stresses into laboratory specimens that are either subsequently loaded to fracture or used to assess the influence of residual stress on material damage mechanisms. Three methods, mechanical, thermal and welding, are scrutinized and illustrative examples provided. The advantages and disadvantages are explored. We conclude that new methods that do not introduce microstructural changes during the generation of residual stress should be sought if an improved understanding of the effects residual stress on fracture is required.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3