Motion-Based Wave Inference With Neural Networks: Transfer Learning From Numerical Simulation to Experimental Data

Author:

Bisinotto Gustavo A.1,de Mello Pedro C.1,Cozman Fabio G.2,Tannuri Eduardo A.1

Affiliation:

1. Universidade de São Paulo, Numerical Offshore Tank (TPN) , São Paulo – SP 05508-030 , Brazil

2. Universidade de São Paulo , São Paulo – SP 05508-030 , Brazil

Abstract

Abstract The directional wave spectrum, which describes the distribution of wave energy along frequencies and directions, can be estimated from the measured motions of a vessel subjected to a particular sea condition by resorting to the wave-buoy analogy. Several methods have been proposed to address the inverse estimation problem; recently, machine learning techniques have been assessed as further alternatives. However, it may be difficult to gather large datasets of in-service motion responses and the associated sea states to train effective data-driven models. In this work, an encoder–decoder neural network is trained with the synthetic responses of a station-keeping platform supply vessel (PSV) to estimate the directional wave spectrum. This estimation model is directly applied to perform wave inference from motion data of wave basin tests with a small-scale model of the same vessel. Furthermore, fine-tuning is also used to incorporate experimental data into the neural network model. Results show a satisfactory match between estimated and measured values, both with respect to the energy distribution and the integral spectrum parameters, indicating that the proposed approach can be employed to obtain data-driven wave inference models when there is little or no availability of measured motion records and the corresponding sea conditions.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundaçã de Amparo à Pesquisa do Estado de Sã Paulo

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3