Risk Based Inspection Planning for Deteriorating Pressure Vessels

Author:

Haladuick Shane1,Dann Markus R.1

Affiliation:

1. University of Calgary, Calgary, AB, Canada

Abstract

Pressure vessels are subject to deterioration processes, such as corrosion and fatigue. If left unchecked these deterioration processes can lead to failure; therefore, inspections and repairs are performed to mitigate this risk. Oil and gas facilities often have regular scheduled shutdown periods during which many components, including the pressure vessels, are disassembled, inspected, and repaired or replaced if necessary. The objective of this paper is to perform a decision analysis to determine the best course of action for an operator to follow after a pressure vessel is inspected during a shutdown period. If the pressure vessel is inspected and an unexpectedly deep corrosion defect is detected an operator has two options: schedule a repair for the next shutdown period, or perform an immediate unscheduled repair. A scheduled repair is the preferred option as it gives the decision maker lead time to accommodate the added labour and budgetary requirements. This preference is accounted for by a higher cost of immediate unscheduled repairs relative to the cost of a scheduled repair at the next shutdown. Depending on the severity of deterioration either option could present the optimal course of action. In this framework the decision that leads to the minimum expected cost is selected. A stochastic gamma process was used to model the future deterioration growth using the historical inspection data, considering the measurement error and uncertain initial wall thickness, to determine the probability of pressure vessel failure. The decision analysis framework can be used to aid decision makers in deciding when a repair or replacement action should be performed. This method can be used in real time decision making to inform the decision maker immediately post inspection. A numerical example of a corroding pressure vessel illustrates the method.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3