Affiliation:
1. Department of Mechanical Engineering, Michigan State University, East Lansing, Mich. 48824
Abstract
Nucleate pool boiling bubble departure data were obtained for the liquid nitrogen-argon cryogenic binary mixture system at 1.3 atmospheres absolute pressure. The latent and sensible heat transport rates at individual boiling sites were calculated from the data to deduce their effect on the degradation in the boiling heat-transfer coefficient in binary mixtures. The latent heat-transfer rate is a result of the bubble evaporation mechanism and the sensible heat-transport rate is due to cyclic thermal boundary layer stripping by departing bubbles. The latent and sensible heat-transport rates at individual boiling sites were found to decrease to a minimum at the maximum vapor-liquid mole fraction difference for both constant heat flux and wall superheating conditions. The large decrease in binary boiling heat-transfer coefficients was thus partially explained by the retardation of these two mechanisms and should be included in any model for predicting boiling heat-transfer coefficients in binary and multicomponent mixtures.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献