Process Fault Diagnosis Based on Process Model Knowledge: Part II—Case Study Experiments

Author:

Isermann R.1,Freyermuth B.1

Affiliation:

1. Institute of Automatic Control, Laboratory of Control Engineering and Process Automation, Technical University Darmstadt, D-6100 Darmstadt, Germany

Abstract

A computer assisted fault diagnosis system (CAFD) is considered which allows the early detection and localization of process faults during normal operation or on request. It is based on an on-line engineering expert system and consists of an analytical problem solution, a process knowledge base, a knowledge acquisition component and an inference mechanism. The analytic problem solution uses a process parameter estimation, and the detection of process coefficient changes, which are symptoms of process faults. The process knowledge base is comprised of analytical knowledge in the form of process models and heuristic knowledge in the form of fault trees and fault statistics. In the phase of knowledge acquisition the process specific knowledge like theoretical process models, the normal behavior and fault trees is compiled. The inference mechanism performs the fault diagnosis, based on the observed symptoms, the fault trees, fault probabilities and the process history. This is described in Part I. In Part II, case study experiments with a d.c. motor, centrifugal pump, a heat exchanger and an industrial robot show practical results of the model based fault diagnosis.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3