Constrained Design Optimization of Rotor-Tilting Pad Bearing Systems

Author:

Untaroiu Costin D.1,Untaroiu Alexandrina1

Affiliation:

1. Rotating Machinery and Controls (ROMAC) Laboratories, Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer’s Way, Charlottesville, VA 22904-4746

Abstract

Design of a rotor-bearing system is a challenging task due to various conflicting design requirements, which should be fulfilled. This study considers an automatic optimization approach for the design of a rotor supported on tilting-pad bearings. A numerical example of a rotor-bearing system is employed to demonstrate the merits of the proposed design approach. The finite element method is used to model the rotor-bearing system, and the dynamic speed-dependent coefficients of the bearing are calculated using a bulk flow code. A number of geometrical characteristics of the rotor simultaneously with the parameters defining the configuration of tilting pad bearings are considered as design variables into the automatic optimization process. The power loss in bearings, stability criteria, and unbalance responses are defined as a set of objective functions and constraints. The complex design optimization problem is solved using heuristic optimization algorithms, such as genetic, and particle-swarm optimization. Whereas both algorithms found better design solutions than the initial design, the genetic algorithms exhibited the fastest convergence. A statistical approach was used to identify the influence of the design variables on the objective function and constraint measures. The bearing clearances, preloads and lengths showed to have the highest influence on the power loss in the chosen design space. The high performance of the best solution obtained in the optimization design suggests that the proposed approach has good potential for improving design of rotor-bearing systems encountered in industrial applications.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3