Affiliation:
1. Mechanical Engineering Group, BITS Pilani, 333 031 Rajasthan, India
Abstract
In this paper, pressure and shear stress are derived under steady state using one-dimensional analysis of the single-grooved slider bearing and journal bearing with partial slip on the stationary surface. The Reynolds boundary conditions are used in the analysis of journal bearing to predict the extent of the full film region. In the cases of partial slip slider and journal bearing, the pressure distribution is higher compared with the conventional bearing with no slip. In the case of partial slip on both slider and journal bearing surfaces, the single-groove, immediately followed by the partial slip region, results in the increase in pressure distribution. The results also show that in comparison to the conventional bearing with no slip, in the cases of partial slip slider and journal bearing, the shear stress increases before the region of slip/no slip interface, while the shear stress decreases in the region of no slip. In the case of the partial slip region on bearing surfaces, the shear stress distribution is lower in the region immediately after the groove. Significant pressure distribution is obtained due to the influence of partial slip on the slider bearing with uniform film thickness and the concentric journal bearing. The maximum pressure occurs at the end of the region of groove, immediately followed by the region of the partial slip. It is found that the pressure distribution of the slider and journal bearing with partial slip surface are not influenced with the further increase in the nondimensional slip coefficient (A) from 10 to 100.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献