Analysis of Single-Grooved Slider and Journal Bearing With Partial Slip Surface

Author:

Rao T. V. V. L. N.1

Affiliation:

1. Mechanical Engineering Group, BITS Pilani, 333 031 Rajasthan, India

Abstract

In this paper, pressure and shear stress are derived under steady state using one-dimensional analysis of the single-grooved slider bearing and journal bearing with partial slip on the stationary surface. The Reynolds boundary conditions are used in the analysis of journal bearing to predict the extent of the full film region. In the cases of partial slip slider and journal bearing, the pressure distribution is higher compared with the conventional bearing with no slip. In the case of partial slip on both slider and journal bearing surfaces, the single-groove, immediately followed by the partial slip region, results in the increase in pressure distribution. The results also show that in comparison to the conventional bearing with no slip, in the cases of partial slip slider and journal bearing, the shear stress increases before the region of slip/no slip interface, while the shear stress decreases in the region of no slip. In the case of the partial slip region on bearing surfaces, the shear stress distribution is lower in the region immediately after the groove. Significant pressure distribution is obtained due to the influence of partial slip on the slider bearing with uniform film thickness and the concentric journal bearing. The maximum pressure occurs at the end of the region of groove, immediately followed by the region of the partial slip. It is found that the pressure distribution of the slider and journal bearing with partial slip surface are not influenced with the further increase in the nondimensional slip coefficient (A) from 10 to 100.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3