Affiliation:
1. Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:
Abstract
This paper describes a stochastic predictive control algorithm for partially observable Markov decision processes (POMDPs) with time-joint chance constraints. We first present the algorithm as a general tool to treat finite space POMDP problems with time-joint chance constraints together with its theoretical properties. We then discuss its application to autonomous vehicle control on highways. In particular, we model decision-making/behavior-planning for an autonomous vehicle accounting for safety in a dynamic and uncertain environment as a constrained POMDP problem and solve it using the proposed algorithm. After behavior is planned, we use nonlinear model predictive control (MPC) to execute the behavior commands generated from the planner. This two-layer control framework is shown to be effective by simulations.
Funder
National Science Foundation
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献