The Dynamic Response of Rotors to Rubs During Startup

Author:

Smalley A. J.1

Affiliation:

1. Applied Physics Division, Southwest Research Institute, San Antonio, TX 78284

Abstract

This paper presents an initial study of rub-induced thermal bow vibration during acceleration or deceleration of a steam turbine rotor. Previous studies of the subject have been limited to constant speed operation, although the problem is often encountered during attempts to bring a rotor up to speed; observations show that acceleration rate is a factor which controls the magnitude of vibrations. Using a relatively simple numerical analysis, the influence of speed transients on rub-induced synchronous vibration is explored. The analysis reveals some significant trends and can help quantify dynamic response to speed changes under the various conditions which cause stator to rotor rubs. The analysis accounts for transient heat conduction within the rotor in the radial and circumferential directions. The result is an instantaneous temperature distribution from which bow of the rotor between the bearings is predicted. The vibration response to mass eccentricity is determined from the amplification factor and proximity of rotor speed to the critical speed. It is assumed that the bow shape and mode shape of the critical speed are similar. The results demonstrate the influence of rub severity, proximity to critical speed, unbalance level, acceleration rate and acceleration direction. In general, the results show that the effects of rubs are aggravated by slow acceleration up or down through a critical or by extended operation just below a critical.

Publisher

ASME International

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3