Study of Hybrid Lubrication at the Tooth Contact of a Wormgear Transmission: Part 1—Formulation and Analysis

Author:

Yuan Qin1,Sun D. C.1,Brewe D. E.2

Affiliation:

1. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000

2. Vehicle Propulsion Directorate, Army Research Laboratory, Lewis Research Center, Cleveland, OH 44135

Abstract

The paper presents a lubrication analysis for the tooth contact of a proposed wormgear transmission. The information needed for the lubrication analysis has been mostly obtained from a previously published wormgear analysis. The information includes the geometry of the clearance between the meshing surfaces, the velocity of the worm surface relative to the gear surface, and the normal force acting on a gear tooth as it moves through the meshing zone. The lubrication analysis is carried out after a design of the oil supply configuration is made, that consists of a single transverse oil recess and a capillary tube flow restrictor. Under the predetermined normal force, the lubrication analysis is aimed at obtaining the needed supply pressure to separate the meshing surfaces by a minimum oil film thickness, which is prescribed to insure the establishment of fluid film lubrication at the contact. The lubrication analysis considers (1) the hybrid lubrication effect (combined hydrostatic action and hydrodynamic wedge and squeeze actions), (2) the temperature rise in the oil film flow and the restrictor flow, and (3) the pressure and temperature dependence of oil properties. Part I describes the formulation of the oil film flow problem (in discrete form) and the restrictor flow problem (in analytical form). The two problems are coupled through the conditions of flow continuity and energy balance in the oil recess.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3