Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings

Author:

Holt Chris1,San Andre´s Luis2,Sahay Sunil3,Tang Peter3,La Rue Gerry3,Gjika Kostandin3

Affiliation:

1. Active Power, Inc., Austin, Texas 78758

2. Mechanical Engineering Department, Turbomachinery Laboratory, Texas A&M University, College Station, Texas 77843

3. Garrett Engine Boosting Systems, Honeywell International, Inc., Torrance, California 90505

Abstract

Measurements of casing acceleration on an automotive turbocharger running to a top speed of 115 krpm and driven by ambient temperature pressurized air are reported. Waterfall acceleration spectra versus rotor speed show the effects of increasing lubricant inlet pressure and temperature on turbocharger rotordynamic response. A comprehensive analysis of the test data shows regimes of speed operation with two subsynchronous whirl motions (rotordynamic instabilities). Increasing the lubricant feed pressure delays the onset speed of instability for the most severe subsynchronous motion. However, increasing the lubricant feed pressure also produces larger synchronous displacements. The effect of lubricant feed temperature is minimal on the onset and end speeds of rotordynamic instability. Nevertheless, operation with a cold lubricant exhibits lower amplitudes of motion, synchronous and subsynchronous. The experimental results show the subsynchronous frequencies of motion do not lock (whip) at system natural frequencies but continuously track the rotor speed. No instabilities (subsynchronous whirl) remain for operating speeds above 90 krpm. Linear and nonlinear analysis results for the operation of a small automotive turbocharger supported on floating ring bearings are presented. A comprehensive fluid film bearing model predicting the forced response of floating ring bearings is also described. The linear rotordynamic model predicts well the rotor free–free modes and onset speed of instability using linearized bearing force coefficients. The nonlinear model incorporating instantaneous bearing reaction forces in the numerical integration of the rotor equations of motion predicts the limit cycle amplitudes with two fundamental subsynchronous whirl frequencies. Comparisons of both models to experimental results follow. The predictions evidence two unstable whirl ratios at approximately 12 ring speed and 12 ring speed plus 12 journal speed. The transient nonlinear responses reveal the importance of rotor imbalance in suppressing the subsynchronous instabilities at large rotor speeds as also observed in the experiments.

Publisher

ASME International

Subject

General Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3