Reliability Modeling for Ball Grid Array Assembly With a Large Number of Warpage Affected Solder Joints
Author:
Chan Y. W.1, Ju T. H.1, Hareb Saeed A.1, Lee Y. C.1, Wu Jih-Shun2, Lii Mirng-Ji3
Affiliation:
1. Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309 2. Semi-Custom Design and Manufacturing, Boulder, CO 80309 3. Intel Corporation, Chandler, AZ
Abstract
A reliability model is established to study thermal fatigue behavior of solder joints in plastic ball grid array (PBGA) assemblies. The model is able to simulate a configuration with a large number of warpage affected solder joints. For efficient computation, regression models are used to calculate the force acting on each solder joint to determine its height under different warpage conditions. With the height and specified solder parameters, the shapes of selected solder joints are calculated using the Surface Evolver. In addition, the displacements of these solder joints can be determined by a macro model using equivalent beams to represent hundreds of solder joints. With the shapes and displacements, three-dimensional micro models for the selected joints are established to compute strain energy densities during temperature cycling. The energy densities can be used to estimate fatigue lives through an empirical correlation. Two PBGA assemblies with 72-I/O cavity-up and 540-I/O cavity-down packages are studied using the reliability model. Silicon chip size and substrate thickness are critical to solder fatigue in the cavity-up assembly. Their effects are reduced substantially for the cavity-down assembly, which is more reliable due to small global thermal mismatch. However, its reliability is strongly affected by the warpage. The warpage changes the shapes of solder joints and can reduce the corner joint’s fatigue life from 20,000 to 7800 temperature cycles for an arch-type warpage of 0.28 mm across a 42.5 mm×42.5 mm region.
Publisher
ASME International
Subject
Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Reference17 articles.
1. Heinrich, S. M., 1994, “Prediction of Solder Joint Geometry,” Chapter 5 of Mechanics of Solder Alloy Interconnects, Frear et al., eds., Van Nostrand Reinhold, pp. 158–198. 2. Heinrich, S. M., Nigro, N. J., Elkouh, A. F., and Lee, P. S., 1993, “Effect of Chip and Pad Geometry on Solder Joint Formation in SMT,” ASME J. Electron. Packag., 115 (4), pp. 433–439. 3. Patra, S. K., Sritharan, S. S., and Lee, Y. C., 1995, “Minimum-Energy Surface Shape of Solder Joints for Non-circular Pads,” ASME J. Appl. Mech., 115, June, pp. 390–397. 4. Racz, L. M., and Szekely, J., 1993, “An Analysis of the Applicability of Wetting Balance Measurements of Components with Dissimilar Surfaces,” Advances in Electronic Packaging, ASME EEP-Vol. 4-2, pp. 1103–1111. 5. Brakke, K. A., 1994, Surface Evolver Manual, version 1.94, University of Minnesota, Geometry Center.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|