Annular Extrudate Swell of Newtonian Fluids Revisited: Extended Range of Compressible Simulations

Author:

Mitsoulis Evan1

Affiliation:

1. School of Mining Engineering and Metallurgy, National Technical University of Athens, Zografou, 15780 Athens, Greece

Abstract

In a recent article (Mitsoulis, 2007, “Annular Extrudate Swell of Newtonian Fluids: Effects of Compressibility and Slip at the Wall,” ASME J. Fluids Eng., 129, pp. 1384–1393), numerical simulations were undertaken for the benchmark problem of annular extrudate swell of Newtonian fluids. The effects of weak compressibility and slip at the wall were studied through simple linear laws. While slip was studied in the full range of parameter values, compressibility was confined within a narrow range of values for weakly compressible fluids, where the results were slightly affected. This range is now markedly extended (threefold), based on a consistent finite element method formulation for the continuity equation. Such results correspond to foam extrusion, where compressibility can be substantial. The new extended numerical results are given for different inner/outer diameter ratios κ under steady-state conditions for Newtonian fluids. They provide the shape of the extrudate, and, in particular, the thickness and diameter swells, as a function of the dimensionless compressibility coefficient B. The pressures from the simulations have been used to compute the excess pressure losses in the flow field (exit correction). As before, weak compressibility slightly affects the thickness swell (about 1% in the range of 0≤B≤0.02) mainly by a swell reduction, after which a substantial and monotonic increase occurs for B>0.02. The exit correction increases with increasing compressibility levels in the lower B-range and is highest for the tube (κ=0) and lowest for the slit (κ=1). Then it passes through a maximum around B≈0.02, after which it decreases slowly. This decrease is attributed to the limited length of the flow channel (here chosen to be eight die gaps).

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3