Affiliation:
1. Lawrence Livermore National Laboratory, Livermore, Calif. 94550
Abstract
An experimental technique is presented to identify fusion boundary (liquid/solid interface) energy transport mechanisms during welding procedures. The gas-tungsten-arc spot-welding procedure, using a low melting point specimen material (lead), was chosen to demonstrate the methods. Vaporization energy losses were found to be important during the growth of the fusion boundary. Significant thermal convection was absent within the weld pool for applied currents less than about 100 A, and for such cases the location of the fusion boundary was found to be governed primarily by heat conduction. At the current levels of almost 300 A, significant weld pool convection was found to exist, especially at the (inner) stagnation point, causing a deeper penetration of the fusion boundary there.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献