An Experimental Investigation Into the Effects of Grain Transport on Columnar to Equiaxed Transition During Dendritic Alloy Solidification

Author:

Gao J. W.1,Wang C. Y.1

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

Abstract

An experimental study has been conducted to investigate the effects of grain transport on the columnar to equiaxed transition (CET) in dendritic alloy solidification. Using the aqueous ammonium chloride solution as a transparent model alloy, experiments were performed in a vertical test cell with cooling from the top, resulting in unidirectional columnar crystals growing downwards. Ahead of the columnar front, equiaxed nuclei were observed to originate mostly by fragmentation of the columnar dendrites in the presence of a thermally driven flow in the melt beneath the columnar mushy zone. Being heavier than the liquid, these fragments fall into the bulk melt where they may grow or remelt. The survived equiaxed crystals finally settle towards the floor and pile up to form an equiaxed bed. The CET occurs when the bottom equiaxed packed bed rises and eventually obstructs the columnar mushy zone growing from the upper surface. Therefore, the CET in the present configuration was predominantly controlled by the sedimentation of equiaxed crystals. A parametric study by varying initial concentration, cooling rate, and superheat was performed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3