Endwall Contouring and Fillet Design for Reducing Losses and Homogenizing the Outflow of a Compressor Cascade

Author:

Reutter Oliver1,Hemmert-Pottmann Stefan1,Hergt Alexander1,Nicke Eberhard1

Affiliation:

1. German Aerospace Center (DLR), Cologne, Germany

Abstract

The following paper deals with the development of an optimized fillet and an endwall contour for reducing the total pressure loss and for homogenizing the outflow of a highly loaded cascade with a low aspect ratio. The NACA-65 K48 cascade profile without a fillet and without endwall contouring is used as a basis. Optimizations are performed using the DLR in-house tool AutoOpti and the RANS-solver TRACE. Three operating points at an inflow Mach number of 0.67 with different inflow angles are used to secure a wide operating range of the optimized design. At first only a fillet is optimized. The optimized fillet is small at the leading edge and rather high, wide and thick towards the trailing edge. It reduces the total pressure loss and homogenizes the outflow up to a blade height of 20 %. Following this a combined optimization of the endwall and the fillet is performed. The optimized contour leads to the development of a vortex, which changes the secondary flow in such a way, that the corner separation is reduced, which in turn significantly reduces the total pressure loss up to 16 % in the design operating point. The contour in the outflow region leads to a significant homogenization of the outflow in the near wall region.

Publisher

American Society of Mechanical Engineers

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of variable fillets on corner separation in a liner compressor cascade;Journal of the Global Power and Propulsion Society;2024-07-25

2. Investigation of non-axisymmetric endwall contouring in a high loaded turbine stator cascade;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2024-02-23

3. Nonuniform height endwall fence optimization of a low-pressure turbine cascade;International Journal of Mechanical Sciences;2023-07

4. Effect of Geometric Variation of Root Fillet on the Flow Characteristic of a Transonic Compressor Rotor;Journal of Thermal Science;2023-05-27

5. The effect of the blended blade and end wall three-dimensional profiling design on cascade;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3