Topography Analysis of Random Anisotropic Gaussian Rough Surfaces

Author:

Prajapati Deepak K.1,Tiwari Mayank1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Patna 801103, India e-mail:

Abstract

Engineered surfaces (ground and similarly structured rough surfaces) show anisotropic characteristics and their topography parameters are direction dependent. Statistical characterization of these surfaces is still complex because of directional nature of surfaces. In this technical brief, an attempt is made to simulate anisotropic surfaces through use of topography parameters (three-dimensional (3D) surface parameters). First, 3D anisotropic random Gaussian rough surface is generated numerically with fast Fourier transform (FFT). Numerically generated anisotropic random Gaussian rough surface shows statistical properties (texture direction, texture ratio) similar to ground and similarly directional anisotropic rough surfaces. For numerically generated anisotropic Gaussian rough surface, important 3D roughness parameters are determined. Sayles and Thomas' (1976, “Thermal Conductance of Rough Elastic Contact,” Appl. Energy, 2(4), pp. 249–267.) theoretical model for directional anisotropic rough surface is adopted here for calculating the summit parameters, i.e., equivalent bandwidth parameter, mean summit curvature, skewness of summit height, standard deviation of summit height, and equivalent spectral moments. This work demonstrates the variation of spectral moments in both across and parallel to the lay directions with pattern ratio (γ=βx/βy). Correlation length (βx) is fixed 10μm and correlation length (βy) is varied from 100 to 10 μm. Variation of summit parameters with pattern ratio is also discussed in detail. Results shows that mean summit curvature and skewness of summit heights increase with increase in pattern ratio, whereas standard deviation of summit heights and equivalent bandwidth parameter (αe) decreases with pattern ratio. A significant difference is found in “Abbott-Firestone” parameters when calculated in both perpendicular and parallel to lay directions. Effect of these parameters on wear process is discussed in brief.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference44 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3