Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects

Author:

Acharya Sumanta1,Houston Leedom David2

Affiliation:

1. e-mail:

2. Turbine Innovation and Energy Research (TIER) Center, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803

Abstract

Large eddy simulations of film cooling from a discrete hole inclined 35 deg and fed by a plenum chamber are performed at a density ratio of 2 and blowing ratios from 0.5 to 2.0. Cylindrical holes at a length to diameter ratio of 1.75 and 3.5 are simulated issuing into a crossflow at a Reynolds number of approximately 16,000 based on freestream velocity and hole diameter. In addition to the baseline case of vertical inflow into the plenum, flow orientation into the plenum chamber parallel to and perpendicular to the mainstream flow are investigated. The predicted results are validated with reported measurements of the flow field and surface adiabatic effectiveness. Results show that the longer delivery tubes (L/D = 3.5) have higher cooling effectiveness except in the very near field of the coolant hole. The flow orientation in the plenum is demonstrated to have a significant effect on cooling effectiveness and on flow behavior in the delivery tube and downstream of the hole. The perpendicular plenum inflow exhibits the lowest cooling effectiveness, the lowest discharge coefficients, asymmetric jetting behavior, swirl, and a low-velocity core at the exit of the delivery tube. The parallel plenum flow orientation is shown to exhibit the highest cooling effectiveness and discharge coefficients.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3