Affiliation:
1. Division of Mechanics and Computation, Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94305
Abstract
The effect of a flattening distortion on the electronic properties of a semiconducting carbon nanotube is investigated through first-principles calculations. As a function of the mechanical deformation, electronic bandgap is reduced leading to a semiconductor-metal transition. However, further deformation reopens the bandgap and induces a metal-semiconductor transition. The semiconductor–metal transitions take place as a result of curvature-induced hybridization effects, and this finding can be applied to develop novel nano electro mechanical systems.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献