Analysis of EHL Circular Contact Shut Down

Author:

Zhao Jiaxin1,Sadeghi Farshid1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-1288

Abstract

In this paper, an isothermal study of the shut down process of elastohydrodynamic lubrication under a constant load is performed. The surface mean velocity is decreased linearly from the initial steady state value to zero. The details of the pressure and film thickness distributions in the contact area are discussed for the two stages of shut down process, namely the deceleration stage and the subsequent pure squeeze motion stage with zero entraining velocity. The nature of the balance between the pressure, the wedge and the squeeze terms in Reynolds equation enables an analytical prediction of the film thickness change on the symmetry line of the contact in the deceleration period, provided that the steady state central film thickness relationship with velocity is known. The results indicate that for a fixed deceleration rate, if the initial steady state surface mean velocity is large enough, the transient pressure and film thickness distributions in the deceleration period solely depend on the transient velocity. The pressure and film thickness at the end of the deceleration period are then the same and do not depend on the initial steady state velocity. From the same initial steady state velocity, larger deceleration rates provide higher central pressure increase, but also preserve a higher film thickness in the contact area at the end of the deceleration period. Later in the second stage when the axisymmetric pressure and film thickness patterns typical of pure squeeze motion form, the pressure distribution in the contact area resembles a Hertzian contact pressure profile with a higher maximum Hertzian pressure and a smaller Hertzian half contact width. As a result, the film thickness is close to a parabolic distribution in the contact area. The volume of the lubricant trapped in the contact area is then estimated using this parabolic film thickness profile.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3