A Computational Fluid Dynamics Investigation on the Axial Induction Factor of a Small Horizontal Axis Wind Turbine

Author:

Mendes Rafael C. F.1,Macias Marianela M.1,Oliveira Taygoara F.1,Brasil Antonio C. P.1

Affiliation:

1. Laboratory of Energy and Environment, University of Brasília, Brasília 70910-900, DF-Brazil

Abstract

Abstract The evolution of wind and hydrokinetic turbines stimulated the development of several tools to evaluate and to predict horizontal axis rotor behavior. From this perspective, the blade element momentum methods stand out as one of the most common approaches due to its reliability and computing speed. In the classical blade element momentum, the axial induction factor is a crucial variable to compute correctly the turbine parameters. Usually, the axial induction is determined by an interactive process that balances the forces at blade sections with momentum equations. The forces are computed based on the airfoil polars evaluated at each blade section with local inlet velocity. This procedure assumes that the swirl terms are linearized, where the lateral pressure forces is neglected. In order to evaluate these tri-dimensional effects on the blade element momentum method, the present work introduces a different methodology to determine the axial induction factor employing computational fluid dynamics simulations. The method was applied for a full-scale horizontal axis rotor with three blades and 1 m of diameter, with wind tunnel experiments for validation. The axial induction factor obtained with the new technique was compared to the classical blade element momentum method. The results show axial induction factor variations along the radial and axial coordinates. An analogy with Glauert power coefficient limit was made, finding a specific limit curve for the tested turbine, and, moreover, a correlation between turbine firing speed and induction factor.

Funder

Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3