The Tensile Strength of Brittle Diamond Lattice Structure With Material Dispersion

Author:

Zhang Xiaoyu11,Zhao Zeang1,Duan Shengyu1,Lei Hongshuai1,Fang Daining11

Affiliation:

1. Beijing Institute of Technology Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, , Beijing 100081 , China

Abstract

Abstract This work investigates the effect of material dispersion on the tensile strength of brittle diamond lattice structures. In actual lattice structures fabricated by additive manufacturing, the dispersion of strength comes from microscale defect, geometric deviation, and manufacture-induced anisotropy. The weakening of ultimate failure strength due to material dispersion cannot be predicted by most existing theoretical models, because they assume homogeneous and determinate mechanical properties of the lattice structure. In this paper, we employ a diamond lattice structure made from brittle material as a typical example, and its tensile behavior is numerically investigated by incorporating the Gaussian distribution of strut strength. Inspired by the simulation results, a stochastic theoretical model is developed to predict the deformation and failure of diamond lattice structure with material dispersion. This model captures the fact that weaker struts break first even if the whole structure can still bear the load. With the continuous increase of stress, these broken struts accumulate into continuous cracks, and ultimate failure occurs when the energy release rate of the initiated crack surpasses the fracture toughness of the lattice structure. This research supplements stochastic features into classical theories and improves the understanding of potential strengthening and toughening designs for lattice structures.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3