An Analytical Theory for Radial Crack Propagation: Application to Spherical Indentation

Author:

Seagraves Andrew N.1,Radovitzky Raúl A.2

Affiliation:

1. Department of Mechanical Engineering, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139 e-mail:

2. Department of Aeronautics and Astronautics, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139 e-mail:

Abstract

A simple analytical theory is proposed for estimating the number of radial cracks which will propagate in brittle materials subjected to axisymmetric transverse surface loads. First, an expression is obtained for the stress intensity factor of a traction-free star-shaped crack in an infinite elastic membrane subjected to axisymmetric transverse loads. Combining this relation with the critical stress intensity factor criterion for fracture, an implicit expression is obtained which defines the number of cracks as a function of the applied loading, initial flaw size, and fracture toughness. Based on the form of this expression, we argue that if the initial flaw size is sufficiently small compared to the length scale associated with the loading, then the number of cracks can be determined approximately in closed-form from the analysis of a traction-free star-shaped crack in a thin body subjected to uniform equibiaxial in-plane tension. In an attempt to validate the theory, comparisons are made with spherical micro-indentation experiments of silicon carbide (Wereszczak and Johanns, 2008, “Spherical Indentation of SiC,” Advances in Ceramic Armor II, Wiley, NY, Chap. 4) and good agreement is obtained for the number of radial cracks as a function of indentation load.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3