Mechanistic Study of Subatmospheric Pressure, Subcooled, Flow Boiling of Water on Structured-Porous Surfaces

Author:

Penley S. J.1,Wirtz R. A.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV 89557

Abstract

Subcooled flow boiling experiments with water at 0.2-atm pressure assess the utility of fine filament screen laminate enhanced surfaces as high-performance boiling surfaces. Experiments are conducted on vertically oriented, multilayer copper laminates in distilled water. The channel Reynolds number is varied from 2000 to 20,000, and subcooling ranges from 2 to 35 K. Boiling performance is documented for ten different porous surfaces having pore hydraulic diameters ranging from 39 μm to 105 μm, and surface area enhancement ratios ranging from 5 to 37. Heat flux of up to 446 W/cm2 is achieved at 35 K subcooling at a channel Reynolds number of 6000, which represents a 3.5-fold increase in critical heat flux (CHF) over that of the saturated pool boiling on the same surface. Results show that CHF is strongly correlated with subcooling, and the effect of subcooling is more pronounced as the channel Reynolds number is increased. It is found that CHF enhancement due to subcooling and channel Reynolds number is intrinsically linked to the surface area enhancement ratio, which has an optimum that depends on the degree of subcooling. High-speed video imagery (up to 8100 fps) and long-range microscopy are used to document bubble dynamics. Boiling mechanisms inherent to subcooling, enhanced surface geometry, and CHF are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3