An Algorithm to Slice 3-D Shapes for Reconstruction in Prototyping Systems

Author:

Chalasani K. L.1,Grogan B.1,Bagchi A.1,Jara-Almonte C. C.1,Ogale A. A.1,Dooley R. L.1

Affiliation:

1. Clemson University

Abstract

Abstract Rapid Prototyping (RP) processes reduce the time consumed in the manufacture of a prototype by producing parts directly from a CAD representation, without tooling. The StereoLithography Apparatus (SLA), and most other recent RP processes build a 3-D object from 2.5-D layers. Slicing is the process of defining layers to be built by the system. In this paper a framework is proposed for the development of algorithms for the representation and definition of layers for use in the SLA, with a view to determine if the slicing algorithms will affect surface finish in any significant manner. Currently, it is not possible to automatically vary slice thicknesses within the same object, using the existent algorithm. Also, it would be useful to use a dense grid for hatching or skin filling any given layer, or to change the hatch-pattern if desired. In addition, simulation of the layered building process would be helpful, so that the user can prespecify parameters that need to be varied during the process. The proposed framework incorporates these and other features. Two approaches for determining contours on each slice are suggested and their implementation is discussed. In the first, the layers are defined by the intersections of a plane with the surfaces defining the object. The plane is moved up from the base of the object as it is being built in increments. All intersections found are stored in a data structure, and sorted in head to tail fashion to define a contour for all closed areas on a layer. The second approach uses a scanline-type search to look for an intersection that will trigger a contour-tracing procedure. The contour-tracer is invoked whenever an unused edge is found in the search. This saves storage and sorting times, because the contour is determined as a chain of edges, in cyclic order. It is envisaged that results of this work on the SLA can be applied to other RP processes entailing layered building.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3