Abstract
Abstract
Rapid Prototyping (RP) processes reduce the time consumed in the manufacture of a prototype by producing parts directly from a CAD representation, without tooling. The StereoLithography Apparatus (SLA), and most other recent RP processes build a 3-D object from 2.5-D layers. Slicing is the process of defining layers to be built by the system. In this paper a framework is proposed for the development of algorithms for the representation and definition of layers for use in the SLA, with a view to determine if the slicing algorithms will affect surface finish in any significant manner. Currently, it is not possible to automatically vary slice thicknesses within the same object, using the existent algorithm. Also, it would be useful to use a dense grid for hatching or skin filling any given layer, or to change the hatch-pattern if desired. In addition, simulation of the layered building process would be helpful, so that the user can prespecify parameters that need to be varied during the process. The proposed framework incorporates these and other features. Two approaches for determining contours on each slice are suggested and their implementation is discussed. In the first, the layers are defined by the intersections of a plane with the surfaces defining the object. The plane is moved up from the base of the object as it is being built in increments. All intersections found are stored in a data structure, and sorted in head to tail fashion to define a contour for all closed areas on a layer. The second approach uses a scanline-type search to look for an intersection that will trigger a contour-tracing procedure. The contour-tracer is invoked whenever an unused edge is found in the search. This saves storage and sorting times, because the contour is determined as a chain of edges, in cyclic order. It is envisaged that results of this work on the SLA can be applied to other RP processes entailing layered building.
Publisher
American Society of Mechanical Engineers
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献