Cavitation Characteristics of S-Blade Used in Fully Reversible Pump-Turbine

Author:

Premkumar T. M.1,Kumar Pankaj1,Chatterjee Dhiman1

Affiliation:

1. Hydroturbomachines Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India e-mail:

Abstract

S-shaped blade profiles with double camber find use in fully reversible turbomachines that can extract power from tides. Though noncavitating characteristics of S-blades were determined in the past, yet characterizing cavitating flow was not carried out. This work, which is the first step in this direction, uses a two-pronged approach of experimental and numerical characterization of cavitating flow past these hydrofoils. Experimental results indicate that as the angle of attack increases in either positive or negative directions, cavitation inception number increases. Minimum cavitation effect is observed at 2 deg, which is zero lift angle of attack. For higher angles of attack (±6deg, ±4deg) and moderate or low cavitation number (σ/σi≤0.3), unsteady cloud cavitation was characterized through visual observation and from pressure fluctuation data. It was observed that for unsteady cavity shedding to take place is the length and thickness of the cavity should be more than 50% and 10% of the chord length, respectively. Predicting flow past this geometry is difficult and the problem may be compounded in many applications because of laminar-to-turbulence transition as well as due to the presence of cavitation. Present simulations indicate that the k-kL-ω transition model may be useful in predicting hydrodynamic performance of this type of geometry and for the range of Reynolds number considered in this paper. Hydrodynamic performance under cavitation indicates that pumping mode is more adversely affected by cavitation and, hence, a fully reversible turbomachine may not perform equally well in turbine and pump modes as expected from noncavitating results.

Publisher

ASME International

Subject

Mechanical Engineering

Reference46 articles.

1. Design and Flow Investigation on a Fully-Reversible Pump-Turbine,1978

2. Boundary Layer Studies Over a S-Blade;Fluid Dyn. Res.,1994

3. Cascade Experiment Over S-Blade;ASCE J. Energy Eng.,1986

4. Numerical Study of Turbulent Flow Over an S-Shaped Hydrofoil;IMechE J. Mech. Eng. Sci. C,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3