Loading History Effects for Deep-Water S-Lay of Pipelines

Author:

Yun Heedo D.1,Peek Ralf R.2,Paslay Paul R.3,Kopp Frans F.4

Affiliation:

1. Shell International Exploration and Production, 3737 Bellaire Blvd., Houston, TX 77025, USA

2. Shell International Exploration and Production, Visseringlaan 19, Room Ma 401K, Postbus 60 2280 AB Rijswijk, The Netherlands

3. Techaid Corporation, 810 Bienville #211, New Orleans, LA 70112

4. Shell International Exploration and Production, 200 North Dairy Ashford, Houston, TX 77079, USA

Abstract

For economic reasons S-Lay is often preferred to J-Lay. However in very deep water S-Lay requires a high curvature of the stinger to achieve the required close-to-vertical departure angle (or a large, low curvature stinger). Choosing the high curvature stinger can lead to plastic deformations of the pipe. The high top tension increases the plastic deformations in two ways: firstly it adds an overall tensile component to the strains, thereby increasing the strains at the 12 o’clock position. Secondly, it increases the strain concentrations, which arise due to discontinuous support of the pipe on the stinger. Typically, the pipe is guided over a series of roller beds. The high top tension tends to straighten the spans between the rollerbeds. To accommodate this (so that the pipe can still follow the stinger), higher curvatures occur at the roller beds. Analytical and numerical solutions are provided to quantify this effect. The analytical solution is fully developed for an arbitrary pipe material models, provided that: (i) the moment-curvature relation for the pipe under tension is known, and (ii) no cyclic plastic ratchetting occurs due to repeated bending of the pipe over the roller beds and straightening in the spans between roller beds. Agreement between the analytical and numerical (finite element) results is excellent. Proper loading history must be used in the numerical simulation, otherwise the level of strain concentration can be overpredicted.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference2 articles.

1. HK&S, 2001, ABAQUS/Standard User’s manual, version 6.2.

2. Timoshenko, S. P., and Gere, J. M., 1972, Mechanics of Materials, D. van Nostrand Company.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3