The Development of the Heliostat Focusing and Canting Enhancement Technique: An Optical Heliostat Alignment Tool for the National Solar Thermal Test Facility

Author:

Sproul Evan1,Chavez Kyle1,Yellowhair Julius2

Affiliation:

1. New Mexico Tech, Socorro, NM

2. Sandia National Laboratories, Albuquerque, NM

Abstract

A heliostat array is a field of heliostats that focuses sunlight continuously on a central receiver in a power tower solar concentration system. Each heliostat consists of a structurally mounted mirror surface capable of reflecting sunlight onto a given target throughout the day. Typically, most heliostats are actually a group of individual mirror facets on a single moving frame. To achieve highly concentrated solar flux on a central receiver, each heliostat mirror facet has to be properly aligned (both canted and focused) when attached to the heliostat frame. In order to accurately evaluate and correct heliostat facet alignment, Sandia National Laboratories (SNL) and New Mexico Tech (NMT) have developed the Heliostat Focusing and Canting Enhancement Technique (H-FACET), a new and unique heliostat alignment tool that allows technicians to make fast and effective adjustments to facet canting and focusing. H-FACET uses a high resolution digital camera mounted on top of a receiver tower to observe the image of a stationary target reflected by a heliostat. Custom image processing software compares specific measurement points on the actual target reflection image with the corresponding measurement points on an ideally reflecting heliostat. Deviations between the actual and ideal reflection points reveal facet misalignments. Additionally, a live image of the ideal and theoretical points provides real-time feedback during the alignment correction process. SNL has implemented H-FACET at the National Solar Thermal Test Facility (NSTTF). Technicians have used the canting portion of the software to successfully cant a large section of the SNL NSTTF heliostat field. Visual inspections of reflected heliostat beam patterns have demonstrated noticeable improvements in beam size and shape resulting from the use of H-FACET. Preliminary quantitative analyses of H-FACET have shown beam diameter reductions of up to fifty percent. The beam reductions resulting from the use of H-FACET will assist in minimizing beam spillage and increasing flux densities. As a result, H-FACET may be a valuable tool in increasing the annual performance of a heliostat field. This paper details the computational algorithms used in H-FACET. These algorithms include accurate models of heliostat field geometries, sun position, facet orientations and facet shapes. This paper also discusses the optical methods used to determine the orientations and surface shapes of ideally aligned facets. Lastly, it investigates probable sources of error and ways to improve H-FACET.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distortion effects in CSP mirror reflections;THE INTERNATIONAL CONFERENCE ON BATTERY FOR RENEWABLE ENERGY AND ELECTRIC VEHICLES (ICB-REV) 2022;2023

2. A testbed for heliostat facets alignment by target reflection;THE INTERNATIONAL CONFERENCE ON BATTERY FOR RENEWABLE ENERGY AND ELECTRIC VEHICLES (ICB-REV) 2022;2023

3. Detecting the reflection of heliostat facets through computer vision;THE INTERNATIONAL CONFERENCE ON BATTERY FOR RENEWABLE ENERGY AND ELECTRIC VEHICLES (ICB-REV) 2022;2023

4. Quantification of canting errors: Technique combining camera vision with theoretical imaging;THE INTERNATIONAL CONFERENCE ON BATTERY FOR RENEWABLE ENERGY AND ELECTRIC VEHICLES (ICB-REV) 2022;2023

5. LIDAR for heliostat optical error assessment;AIP Conference Proceedings;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3