Affiliation:
1. Stanford University, Stanford, CA
Abstract
Astute choices made early in the design process provide the best opportunity for reducing the life cycle cost of a new product. Optimal decisions require reasonably detailed disciplinary analyses, which pose coordination challenges. These types of complex multidisciplinary problems are best addressed through the use of decomposition-based methods, several of which have recently been developed. Two of these methods are collaborative optimization (CO) and analytical target cascading (ATC). CO was conceived in 1994 in response to multidisciplinary design needs in the aerospace industry. Recent progress has led to an updated version, enhanced collaborative optimization (ECO), that is introduced in this paper. ECO addresses many of the computational challenges inherent in CO, yielding significant computational savings and more robust solutions. ATC was formalized in 2000 to address needs in the automotive industry. While ATC was originally developed for object-based decomposition, it is also applicable to multidisciplinary design problems. In this paper, both methods are applied to a set of test cases. The goal is to introduce the ECO methodology by comparing and contrasting it with ATC, a method familiar within the mechanical engineering design community. Comparison of ECO and ATC is not intended to establish the computational superiority of either method. Rather, these two methods are compared as a means of highlighting several promising approaches to the coordination of distributed design problems.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献