Smoothed Particle Hydrodynamics Simulation of an Air-Assisted Atomizer Operating at High Pressure: Influence of Non-Newtonian Effects

Author:

Chaussonnet G.1,Koch R.2,Bauer H.-J.2,Sänger A.3,Jakobs T.3,Kolb T.3

Affiliation:

1. Institut für Thermische Strömungsmaschinen, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany e-mail:

2. Institut für Thermische Strömungsmaschinen, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany

3. Institut für Technische Chemie, Karlsruher Institut für Technologie (KIT), P.O. Box 3640, Karlsruhe 76021, Germany

Abstract

A twin-fluid atomizer configuration is predicted by means of the two-dimensional (2D) weakly compressible smooth particle hydrodynamics (SPH) method and compared to experiments. The setup consists of an axial liquid jet surrounded by a high-speed air stream (Ug ≈ 60 m/s) in a pressurized reactor, which is operated at up to 11 bar. Two types of liquid are investigated: a viscous Newtonian liquid (μl = 200 mPa·s) consisting of glycerol/water mixture and a viscous non-Newtonian liquid (μ1,apparent. ≈ 150 mPa·s), which is a carboxymethyl cellulose solution. Three-dimensional (3D) effects are taken into account in the 2D code by introducing: (i) a surface tension term, (ii) a cylindrical viscosity operator, and (iii) a modified velocity accounting for the divergence of the volume in the radial direction. The numerical results at high pressure show a good qualitative agreement with experiment, i.e., a correct transition of the different atomization regimes with regard to pressure, and similar dynamics and length scales of the generated ligaments. The propagation velocity of the Kelvin–Helmholtz (KH) instability is well predicted, but its frequency needs a correction factor to be globally well recovered for the Newtonian liquid. The Sauter mean diameter (SMD), calculated from the spray size distribution, shows similar trends of the reactor pressure dependency. The simulation of the non-Newtonian liquid at high pressure shows the same breakup regime with finer droplets compared to Newtonian liquids, and the simulation at atmospheric pressure shows an apparent viscosity similar to the experiment.

Funder

Helmholtz-Gemeinschaft

Publisher

ASME International

Subject

Mechanical Engineering

Reference48 articles.

1. State of the Art of the Bioliq Process for Synthetic Biofuels Production;Environ. Prog. Sustain. Energy,2012

2. Synthesis Gas From Biomass-Problems and Solutions En Route to Technical Realization;Oil Gas Eur. Mag.,2007

3. Sänger, A., Jakobs, T., Djordjevic, N., and Kolb, T., 2014, “Effect of Primary Instability of a High Viscous Liquid Jet on the Spray Quality Generated by a Twin-Fluid Atomizer,” European Conference for Liquid Atomization and Spray System (ILASS), Bremen, Germany, Sept. 8–10, Paper No. ABS-255.https://www.researchgate.net/publication/278030369_Effect_of_primary_instability_of_a_high_viscous_liquid_jet_on_the_spray_quality_generated_by_a_twin-fluid_atomizer

4. Gasification of High Viscous Slurry R&D on Atomization and Numerical Simulation;Appl. Energy,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3