A Numerical Investigation of Rotating Instability in Steam Turbine Last Stage

Author:

Zhang L. Y.1,He L.2,Stüer H.3

Affiliation:

1. e-mail:

2. e-mail:  Department of Engineering Science, University of Oxford, Oxford, OX1 2JD, UK

3. Fossil Power Generation, Steam, Energy Sector, Turbine Technology, Siemens AD, 45478 Mülheim an der Ruhr, Germany

Abstract

The unsteady flow phenomenon (identified as rotating instability) in the last stage of a low-pressure model steam turbine operated at very low mass flow conditions is numerically studied. This kind of instability has been observed previously in compressors and can be linked to the high structural stress levels associated with flow-induced blade vibrations. The overall objective of the study is to enhance the understanding of the rotating instability in steam turbines at off design conditions. A numerical analysis using a validated unsteady nonlinear time-domain CFD solver is performed. The 3D solution captures the massively separated flow structure in the rotor-exhaust region and the pressure ratio characteristics around the rotor tip of the test model turbine stage in good comparison with the experiment. A computational study with a multi-passage whole annulus domain on two different 2D blade sections is subsequently carried out. The computational results clearly show that a rotating instability in a turbine blading configuration can be captured by the 2D model. The frequency and spatial modal characteristics are analyzed. The simulations seem to be able to predict a rotating fluid dynamic instability with the similar characteristic features to those of the experiment. In contrast to many previous observations, the results for the present configurations suggest that the onset and development of rotating instabilities can occur without 3D and tip-leakage flows, although a quantitative comparison with the experimental data can only be expected to be possible with fully 3D unsteady solutions.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Stall Inception in Axial Flow Compressors;ASME J. Turbomach.,1993

2. Computational Study of Rotating Stall Inception in Axial Compressors;AIAA J. Propul. Power,1997

3. Hah, C., Schulze, R., Wagner, S., and Hennecke, D. K., 1999, “Numerical and Experimental Study for the Short Wavelength Stall Inception in a Low-Speed Axial Compressor,” Proceedings of the Fourteenth ISABE Conference, Florence, Italy, September 5–10, ISABE Paper No. 99-7033.

4. Computations of Blade Row Stall Inception in Transonic Flows;Aeronaut. J.,1999

5. Bent, P. H., McLaughlin, D. K., and Thompson, D. E., 1992, “The Influence of Discharge Configuration on the Generation of Broadband Noise in Centrifugal Turbomachinery,” D. DGLR/AIAA Paper No. 92-02-099.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3