Numerical Investigation of Bladeless Compressor on Different Disk Spaces and Diffuser Configurations

Author:

Tiwari Ravi Nath1,Eleftheriou Konstantinos2,Ferrari Mario Luigi1,Efstathiadis Theofilos2,Traverso Alberto1,Kalfas Anestis2

Affiliation:

1. TPG, University of Genoa , Via Montallegro, 1, Genova 16145, Italy

2. LFMT, Aristotle University of Thessaloniki, Building D, Aristotle University Campus , Thessaloniki 541 24, Greece

Abstract

Abstract The cost-effectiveness of turbomachinery is a key aspect within the small-size compressor market. For this reason, Tesla turbomachinery, invented by Nikola Tesla in 1913, could be a good solution, particularly for low volumetric flow applications, where volumetric compressors are usually used. It consists of a bladeless rotor that stands out for its ease of construction and its ability to maintain almost the same performance as size decreases. One of its advantages is that it can run either as a turbine or as a compressor with minor modifications at the stator. The objective of this paper is to investigate a 3 kW Tesla compressor, which design was derived from an analogous Tesla expander prototype (58% isentropic efficiency from the numerical study), by conducting a computational fluid dynamic analysis for different disk gaps and diffuser configurations. The potential of the Tesla compressor is shown to be quite promising, with a peak isentropic efficiency estimated at 53%. Although bladeless compressor is a simple turbomachinery device, different parts, i.e., diffuser, tip clearance, and volute need to be optimized. Utilizing computational fluid dynamics algorithms, different disk gaps and different diffusers are simulated in order to increase the overall performance of the compressor and understand the flow dynamic behavior behind this technology. The dimensionless Ekman number is used to express the optimum disk space of the compressor rotor. Thus, the overall performance of the Tesla compressor is improved by 5–10% points compared to the initial model. Simultaneously, diffuser optimization strategies are applied and proved that there is a direct impact on the optimum design conditions, improving the pressure ratio at high mass flow rates.

Funder

Università degli Studi di Genova

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference26 articles.

1. Turbine,1913

2. Tesla, N., 1913, “ Fluid Propulsion,” U.S. Patent No. 1,061,142.

3. An Analytical and Experimental Investigation of Multiple Disk Turbines;ASME J. Eng. Power,1965

4. Characterisation of a Small Viscous Flow Turbine;Exp. Therm. Fluid Sci.,2008

5. Experimental Investigation on a 3 kW Air Tesla Expander With High-Speed Generator,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3