Affiliation:
1. Research Scholar
2. Associate Professor e-mail: Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
Abstract
Coaxial thermocouple sensors are suitable for measuring highly transient surface heat fluxes because the response times of these sensors are very small (∼0.1 ms). These robust sensors have the flexibility of mounting them directly on the surface of any geometry. So, they have been routinely used in ground-based impulse facilities as temperature sensors where rapid changes in heat loads are expected on aerodynamic models. Subsequently, the surface heat fluxes are predicted from the transient temperatures by appropriate one-dimensional heat conduction modeling for semi-infinite body. In this backdrop, the purpose of this work is to design and fabricate K-type coaxial thermocouples in-house and calibrate them under similar nature of heat loads by using simple laboratory instruments. Here, two methods of dynamic calibration of coaxial thermocouples have been discussed, where the known step loads are applied through radiation and conduction modes of heat transfer. Using appropriate one dimensional heat conduction modeling, the surface heat fluxes are predicted from the measured temperature histories and subsequently compared with the input heat loads. The recovery of surface heat flux from laser based calibration experiment under-predicts by 4% from its true input heat load. Similarly, recovery of surface heat flux from the conduction mode calibration experiments under-predicts 6% from its true input value. Further, finite-element based numerical study is performed on the coaxial thermocouple model to obtain surface temperatures with same heat loads as used in the experiments. The recovery of surface temperatures from finite element simulation is achieved within an accuracy of ±0.3% from the experiment.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献