Contact Law and Coefficient of Restitution in Elastoplastic Spheres

Author:

Ma Daolin1,Liu Caishan2

Affiliation:

1. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China 100871

2. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China 100871 e-mail:

Abstract

A complete contact cycle of an elastoplastic sphere consists of loading and unloading phases. The loading phase may fall into three sequential regimes: elastic, mixed elastic–plastic, and fully plastic. In this paper, we distinguish the transition points among the three regimes via the material hardness and a dimensionless geometric parameter corresponding to the onset of the fully plastic regime. Based on Johnson’s simplified spherical expansion model, together with the well-supported force–indentation relationships in the elastic and fully plastic regimes, we build an analytical approximation for the mixed elastic–plastic regime by enforcing the C1 continuity of a loading force–indentation curve. Unloading responses of the elastoplastic sphere are characterized by an elastic force–indentation relation, which has a Hertzian-type form but takes into account the effects of the strain hardening that occurs in the mixed elastic–plastic regime. We validate the model by comparing with existing quasi-static and impact experiments and show that the model can precisely capture the force–indentation responses. Further validation is performed by employing the proposed compliance model to investigate the coefficient of restitution (COR). We achieve agreement between our numerical results and the experimental data reported in other studies. Particularly, we find that the COR is inversely proportional to the impacting velocity with an exponent equal to 1/6, instead of 1/4 reported by many other models.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3