Affiliation:
1. University of Missouri, Columbia, MO
2. Caterpillar Inc., Peoria, IL
Abstract
Axial piston pumps of swash-plate type are extensively used in off-highway machines to convert rotating mechanical power into hydraulic power. Efficiency of such pumps is of considerable importance to hydraulic design engineers. Many researchers have tried to create mathematical models for describing pump efficiency. These models are typically a system of nonlinear algebraic equations dependent upon a total of four variables (pressure, speed, temperature, displacement) and a set of experimentally determined coefficients. Since these models are not of the a-priori type, they are not of much value to a design engineer who is trying to design an efficient pump. Others have tried to use physics based models and numerical programs to accurately predict the influence of component design on efficiency. Such programs are considerably slow to run and of not much use to a design engineer who needs to make quick decisions. Hence the objective of this paper is to understand the sensitivity of various design parameters on the total efficiency of the pump by conducting a dimensionless parameter study of a large set of pump design parameters. Using this method it will be shown that a small group of design parameters have the highest influence on the efficiency of these pumps.
Publisher
American Society of Mechanical Engineers
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献