Reliability-Informed Economic and Energy Evaluation for Bi-Level Design for Remanufacturing: A Case Study of Transmission and Hydraulic Manifold

Author:

Nemani Venkat P.1,Liu Jinqiang1,Ahmed Navaid2,Cartwright Adam2,Kremer Gül E.3,Hu Chao45

Affiliation:

1. Iowa State University Department of Mechanical Engineering, , Ames, IA 50011

2. John Deere Reman—Springfield, Deere & Company , Springfield, MO 65803

3. Iowa State University Department of Industrial and Manufacturing Systems Engineering, , Ames, IA 50011

4. Iowa State University Department of Mechanical Engineering, , Ames, IA 50011 ;

5. Iowa State University Department of Electrical and Computer Engineering, , Ames, IA 50011

Abstract

Abstract Design for remanufacturing (DfRem) is one attractive strategy that encourages the reuse of a product and extends the product's life cycle. Traditional design processes often only consider product reliability at an early design stage. However, from the perspective of environmental sustainability, it is becoming increasingly important to evaluate the long-term economic and environmental impacts of design decisions during early-stage design. We propose a bi-level DfRem framework consisting of system-level reusability allocation and component-level design tradeoff analysis, considering reliability and product warranty policy. First, a system-level reusability allocation problem aims at a theoretical exploration of the design space where all the components comprising the system are allocated certain reuse rates to achieve target energy savings with minimum cost. Following the theoretical exploration at the system level, a component-level analysis looks at practical design options for each component and trades-off between the overall cost and energy consumption for multiple remanufacturing cycles. Both levels of the framework require modeling component reuse for multiple remanufacturing cycles, which we achieve by using a branched power-law model that provides probabilistic scenarios of reusing the component or replacing it with a new part. We demonstrate the utility of this framework with the case study of an infinitely variable transmission (IVT) used by some agricultural machines manufactured by John Deere and show snapshots of a prototype software tool that we developed for easy use by designers.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3