Experimental Investigation of the Location of Maximum Erosive Wear Damage in Elbows

Author:

Mazumder Quamrul H.1,Shirazi Siamack A.2,McLaury Brenton2

Affiliation:

1. Department of Computer Science, Engineering Science and Physics, University of Michigan-Flint, Flint, MI 48502

2. The University of Tulsa, 600 South College Avenue, Tulsa, OK 74104

Abstract

Erosive wear damage of elbows due to solid particle impact has been recognized as a significant problem in several fluid handling industries. Solid particle erosion is a complex phenomenon due to different parameters causing material removal from the metal surface. The particle density, size, shape, velocity, concentration, impact angle, and impacting surface material properties are some of the major parameters. Among the various factors, the particle impact velocity has the greatest influence in erosion. The particle impact velocity and impact angles depend on the fluid velocity and fluid properties. The particle to particle, particle to fluid, and particle to wall interactions increase the complexity of the erosive wear behavior. In multiphase flow, the presence of different fluids and their corresponding spatial distribution of the phases, adds another dimension to the problem. Most of the previous investigations were focused on determination of erosion in terms of mass loss of the eroding surfaces without identifying the specific location of the maximum erosive wear. During this investigation, magnitude of erosion at different location of an elbow specimen was measured to determine the location of maximum erosion. Experimental investigation of erosion in single-phase and multiphase flows was conducted at different fluid velocities. Both mass loss and thickness loss measurements were taken to characterize erosion behavior and erosion patterns in an elbow. Experimental results showed different erosion behavior and location of maximum erosion damage in single-phase and multiphase flows. The locations of maximum wear due to erosion were also different for horizontal flow compared to vertical flow.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference15 articles.

1. Mechanisms of Erosion in Slurry Pipelines;Glasser

2. Erosion-Corrosion in Slurry Pipelines;Postleth;Corrosion (Houston)

3. Effects of Applying a Stochastic Rebound Model in Erosion Prediction of Elbows and Plugged Tee;Chen

4. Erosion of Surfaces by Solid Particles;Finnie;Wear

5. The Erosion of Metal Alloys and Their Scales;Levy

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3