Measurement of Buoyant Jet Entrainment from Single and Multiple Sources

Author:

Davis L. R.1,Shirazi M. A.1,Siegel D. L.1

Affiliation:

1. Corvallis Environmental Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon

Abstract

An experimental investigation was conducted to determine the dilution characteristics of single and multiple port buoyant discharges typical of modern natural and mechanical draft cooling towers. Simultaneous measurements of velocity and tracer concentration profiles were taken at various downstream locations in the three-dimensional plumes discharged into a stagnant ambient using a hot film anemometer and conductivity probe. The number of discharge ports was varied from one to seven. Discharge densimetric Froude numbers were varied from 1.5 to infinity. Numerical integration of the profiles gave dilution, tracer conservation, and momentum fluxes. The effect of reducing Froude number was to increase entrainment considerably. Increasing the number of discharge ports reduced the rate of entrainment. In multiple port discharges the shape of the plume changed from an elongated configuration to nearly axisymmetric within the first 20–30 diameters of discharge.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3