The Flow and Decay Behavior of a Submerged Shear-Thinning Jet With Yield Stress

Author:

Hammad Khaled J.1

Affiliation:

1. Department of Engineering, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06050 e-mail:

Abstract

The flow and decay characteristics of submerged jets of shear-thinning fluids with yield stress are studied. Numerical solutions to the governing mass and momentum conservation equations, along with the Herschel–Bulkley rheological model, are obtained using a finite-difference scheme. A parametric study is implemented to investigate the influence of flow inertia and rheology over the following range of parameters: Reynolds number, 50 ≤ Re ≤ 200; yield number, 0 ≤ Y ≤ 1; and shear-thinning index, 0.6 ≤ n ≤ 1. A large recirculation region exists for Newtonian and shear-thinning non-Newtonian jets. However, the extent and strength of the recirculation region substantially diminish with the yield number and, to a lesser extent, when the shear-thinning index is reduced from 1 to 0.6. Increasing the yield number beyond a critical value eliminates flow recirculation. The centerline velocity and momentum decay of shear-thinning jets with yield stress, in general, increase with the yield number. Velocity- and momentum-based depths of penetration, DPU, and DPM, respectively, are introduced and presented. DPU and DPM are the downstream locations corresponding to 90% decay in the initial centerline velocity and jet momentum, respectively. A substantial decrease in DPU and DPM is observed when the shear-thinning index is reduced from 1 to 0.6 for Y = 0. The presence of yield stress significantly reduces both DPU and DPM of submerged jets. The impact of shear-thinning on the decay characteristics of the jet is more pronounced at low yield numbers.

Publisher

ASME International

Subject

Mechanical Engineering

Reference27 articles.

1. Evaluation of Scaling Correlations for Mobilization of Double-Shell Tank Waste,1997

2. The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations,2010

3. PIV Study of the Near-Field Region of a Turbulent Round Jet,2010

4. Characterization of the Behaviour of Confined Laminar Round Jets;ASME J. Fluids Eng.,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3