Affiliation:
1. Tennessee Valley Authority, Engineering Laboratory, Norris, TN 37828
Abstract
A computer model of the simultaneous heat, mass, and momentum transfer processes occurring throughout an entire cooling tower is described in this paper. The model includes the flexibility to analyze the several configurations, fill arrangements, and flow distributions commonly used by the power industry. The fundamental governing equations are solved using a finite-integral technique to provide a quasi-two-dimensional description of the flow and cooling process within the tower. The model has been successfully compared with field data from cooling towers at three TVA power plants as well as data from other utilities. Each of these towers was significantly different in design, thereby demonstrating the versatility of the model for correctly predicting the cooling performance of mechanical and natural draft towers, as well as crossflow and counterflow orientations, for a range of meteorological and plant operating conditions.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献