Optimization of Y-Shaped Micro-Mixers With a Mixing Chamber for Increased Mixing Efficiency and Decreased Pressure Drop

Author:

Samancıoğlu Umut Ege1,Koşar Ali2,Cetkin Erdal1

Affiliation:

1. Department of Mechanical Engineering, Izmir Institute of Technology , Izmir 35430, Turkey

2. Faculty of Engineering and Natural Sciences, Sabanci University , Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces, Sabanci University, Istanbul 34956, Turkey

Abstract

Abstract In this study, Y-shaped micromixers with mixing chamber design optimized as rotation and chaotic advection in the fluid domain increase with the chamber. Motivated by the advantages of Y-shaped mixers, a parametric study was performed for inlet angles (α, β), inlet channel eccentricities (x-ecc, z-ecc) and length scale ratios (L1/L2, D1/D2, and Vsp). z-eccentricity is introduced in addition to x-eccentricity to create a design that further enhances the swirl and chaotic advection inside mixing chamber for the first time. The results reveal that the maximum mixing efficiency can be achieved for Reynolds number of 81 and α, β, x-ecc, z-ecc, D1/D2, and L1/L2 values of 210°, 60°, 20 μm, 20 μm, 1.8, and 4, respectively. In addition, the proposed Y-shaped micromixer leads to a lower pressure drop (at least 50% reduction for all Reynolds numbers) in comparison to competing design. The maximum reduction in pressure drop is 72% less than the curved-straight-curved (CSC) (Re = 81) with mixing efficiency of 88% and pressure drop of 9244.4 Pa. Overall, an outstanding mixing efficiency was offered over a wide range of Reynolds numbers with distinctly low pressure drop and a compact micromixer design, which could be beneficial for a wide variety of applications where volume and pumping power are limited.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3