Model-Based Condition Monitoring of an Electro-Hydraulic Valve

Author:

Steinboeck Andreas1,Kemmetmüller Wolfgang2,Lassl Christoph,Kugi Andreas3

Affiliation:

1. Postdoctoral Research Assistant e-mail:

2. Assistant Professor e-mail:

3. Professor e-mail:  Automation and Control Institute, Vienna University of Technology, Gußhausstraße 27-29/376, Vienna 1040, Austria

Abstract

In many hydraulic systems, it is difficult for human operators to detect faults or to monitor the condition of valves. Based on dynamical models of an electro-hydraulic servo valve and a hydraulic positioning unit, we develop a parametric fault detection and condition monitoring system for the valve. Our approach exploits the nexus between the spool position, the geometric orifice area, the flow conditions at wearing control edges, and the velocity of the controlled cylinder. The effective orifice area of each control edge is estimated based on measurement data and described by aggregate wear parameters. Their development is monitored during the service life of the valve, which allows consistent tracking of the condition of the valve. The method is suitable for permanent in situ condition monitoring. Flow measurements are not required. Computer simulations and measurement results from an industrial plant demonstrate the feasibility of the method.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference32 articles.

1. Condition Monitoring and Diagnostics of Machines—Vocabulary;ISO 13372:2004,2004

2. Condition Monitoring and Diagnostics of Machines—General Guidelines on Data Interpretation and Diagnostics Techniques;ISO 13379:2003,2003

3. Condition Monitoring and Diagnostics of Machines—General Guidelines;ISO 17359:2011,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3