Unsteady Non-Darcian Forced Convection Analysis in an Annulus Partially Filled With a Porous Material

Author:

Al-Nimr M. A.1,Alkam M. K.1

Affiliation:

1. Mechanical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan

Abstract

Numerical solutions are presented for the problem of transient, developing, forced-convection flow in concentric annuli partially filled with porous substrates. The porous substrate is attached either to the inner cylinder (case I), or to the outer cylinder (case O). In both cases, the boundary in contact with the porous substrate is exposed to a sudden change in its temperature while the other boundary is kept adiabatic. Including the macroscopic inertial term, the Brinkman-Forchheimer-extended Darcy model is used to model the flow inside the porous domain. The effects of different parameters regarding the geometry, the solid matrix, and the fluid on the hydrodynamic and thermal behavior are investigated. It is shown that porous substrates may improve Nusselt number by 1200 percent keeping other flow and geometrical parameters fixed. Also, it is found that there is an optimum thickness for the porous substrate beyond which there is no significant improvement in Nusselt number. In the present work, the dimensionless hydrodynamic entrance length Zen varies within the range 2–45 and it has significant effect on the fully developed Nusselt number at steady-state conditions. As a result, the macroscopic inertial term in the porous domain momentum equation should not be neglected.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3